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In 1935, Yukawa9 pointed out that short range nuclear 
forces may be accounted for by a field of a new kind 

corresponding to the existence of particles—now generally 
denoted as mesons—with a rest mass intermediary between 
those of the electron and the proton, and with an integral 
spin. Since then, the meson field theory has been treated by 
a great number of authors and has undergone an important 
development in various respects.

Originally, Yukawa used a scalar field function implying 
the mesons to have spin 0. Such a formalism gives, however, 
a repulsion between the nucleons in a 3S slate of the deuteron 
in contradiction to the experiments which show that the 
ground state of the deuteron is just a 3S state. The difficulty 
was overcome in the further development of the theory 
when, according to a formalism due to Proca2), the field 
was described by means of a vector function. This form 
of the theory which leads to the value 1 of the spin of the 
mesons was developed by Yukawa and Sakata 3), Fröhlich, 
Heitler and Kemmer41, Bhabha51, and Stückelberg6). 
Assuming that the spin of the meson does not exceed 1, 
Kemmer 7) was able to show that the meson field can be 
described by four—and only by four—different wave­
functions characterized by their covariance properties. 
Besides the mentioned “scalar” and “vector” functions, 
“pseudoscalar” and “pseudovector” wave-functions or 
arbitrary combinations of all of them are possible.
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In his first paper, Yukawa considered charged mesons, 
only, but in the subsequent development it has been neces­
sary also to assume the existence of neutral mesons in the 
theory, since it was shown by collision experiments that 
the interaction—at nuclear distances—between two protons 
is approximately the same as that between a proton and a 
neutron8). As found by Kemmer9), this experimentally 
observed charge independence of the nuclear forces can 
be accounted for in combining the wave-functions of the 
charged and the neutral mesons in a certain symmetrical 
scheme in which the nucleons interact equally strongly 
with neutral, positive and negative mesons.

In a paper by Møller and Rosenfeld10) (in the 
following quoted as MR.) it was shown, however, that, 
when introducing the charged and neutral mesons in the 
mentioned symmetrical way, it is necessary to combine the 
“vector” theory with the “pseudoscalar” theory in order 
to avoid the appearance of singular terms in the static 
interaction between nucleons and, thus, to obtain a basis 
for an unambiguous description of the stationary states of 
atomic nuclei.

The charge independence of the nuclear forces may, of 
course, also be explained by using neutral meson fields, 
only. A theory on these lines has been put forward by 
Betiie11) who used a vector held function for the descript­
ion of the neutral mesons. In order to get finite results in 
the calculations following from such a theory it is, however, 
necessary to “cut off” at small distances in a more or less 
arbitrary way. To obtain an unambiguous theory for the 
energy levels of the deuteron without having recourse to 
such a procedure it is, again, necessary to combine two 
types of meson fields, viz. a “scalar” and a “pseudovector” 
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field (cf. MR. p. 34, footnote). This theory which, in the 
following, will be called the “neutral meson theory” can in 
certain respects be regarded as dual to the “symmetrical 
meson theory” treated in MR.

The symmetrical theory has been brought into an 
equivalent and particularly compact form by Belinfante 12) 
who has written the 15 field equations as one single “undor” 
equation showing a close analogy to the Dirac equation of 
the electron. The “undors” introduced by Belinfante are 
quantities which under Lorentz transformations behave 
like products of Dirac wave-functions (four-spinors).

Irrespective of the form in which the symmetrical theory 
is written, the field equations contain four universal con­
stants, /Í, f'^, gq and </2, mutually independent apart from 
the condition

(A)2 = (f7a)2

which is unavoidable if the singular terms shall cancel 
each other in the nuclear interaction. The circumstance 
that the two kinds of fields appearing in the theory are in 
no direct connection with each other and, furthermore, the 
occurrence of a large number of independent constants 
constitute an unsatisfactory feature of the theory. Recently, 
however, Møller has shown in a paper13' (quoted in the 
following as M.) that the field equations of the vector and 
the pseudoscalar theory can be comprised in one set of 
five-dimensional field equations which become invariant 
with respect to five-dimensional rotations on condition that
the independence of the constants is restricted by the
relations

A = g\ and f2 = — </2.

The advantages of the representation used by Belin­
fante as well as the simplification obtained by a five- 
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dimensional treatment of the theory make it desirable to 
generalize the undor description of the meson theory to 
the case of five dimensions, a generalization which will be 
performed in the present paper. In this way, we obtain a 
rather concise and clear form of the theory and, at the 
same time, the relation between the neutral and the sym­
metrical theory is elucidated from a new point of view.

The first sections of this paper are devoted to a more 
detailed account of some of the earlier investigations 
mentioned above. Thus, section 1 contains the fund­
amental equations for the symmetrical theory in live 
dimensions, in section 2, a certain representation of the 
Dirac matrices used in the following, the so-called Kramers 
representation, is introduced and, in section 3, a short 
account of the general transformation formulae for in­
finitesimal and finite rotations in five dimensions is given.

Next, section 4 contains the definition and the simplest 
properties of the four-dimensional undors introduced by 
Belinfante as well as of their five-dimensional generaliza­
tion with the alterations which are made necessary by the 
condition of invariance with respect to five-dimensional 
rotations. Finally, the undors are expressed by the tensor 
field quantities and an example is given in order to il­
lustrate the way in which calculations with undors are 
running.

After these preparations, it is possible to set up, in section 
5, the undor field equation of the symmetrical theory 
and, in section 6, the undor field equation of the neutral 
meson theory which only by a change of sign differs essent­
ially from the former equation. In section 7, the “adjoint” 
undor is introduced and expressed in terms of the original 
undor elements. Furthermore, the corresponding differential 
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equation for this adjoint undor is derived. Now, in section 
8, it is shown that the field equation for the symmetrical 
theory may be derived from a variational principle, the 
corresponding Lagrangeian assuming a rather elegant form 
in the undor formulation. The wave-equations of the nucleons 
and the expression for the current vector are derived.

This formalism is especially well suited to be used for 
the description of the symmetrical theory but, as shown in 
section 9, not for the description of the neutral theory. 
Thus, the impossibility of obtaining in such a way a La­
grangeian principle for the neutral theory in live dimens­
ions would seem to offer an argument in preference of 
the symmetrical theory.

1. Fundamental equations of the five-dimensional 
symmetrical meson theory.

In the five-dimensional meson theory the 10 field equa­
tions of the vector theory together with the 5 equations of 
the pseudoscalar theory are comprised in the following 
equations (cf. M. (12)):

<*pv ^p V p + ^pv

Dv ^pv + K’2 ¿p = p w

p, V = 0, 1,2, 3, 4; K = n

(a)

(b)
(1)

where and 7/^ are five-vectors, 6rgv and ÄyV are an­
tisymmetrical five-tensors in the (.r0, x2, x3, x4)-space,
and Mm is the mass of the meson. A heavy printed letter 
indicates that the quantities in question have three 
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independent components in isotopic space so that, for 
instance, signifies the symbolic vector:

We have, thus, to do with three non-interfering meson 
fields, the index 3 referring to the neutral field, while the 
indices 1 and 2 refer to the real and imaginary part of the 
complex field representing the charged mesons. The sym­
bols G* and ¿ describe the field quantities, while >S and .1/ 
denote the densities of the source distribution defined by

= 7i V'tTY^

, 72 + r 1
>%v = 2k V'^ÍYn-Yv]’/'

where T is the isotopic spin vector, ip the wave-function 
of the nucleons, and its adjoint ip^ is given by

(3)

Further, [y^, yv] is the commutator of the quantities y^ 
used in M. and explicitely written down in equations (5) 
of the next section.

The equations (1) are evidently invariant with respect to 
the group of five-dimensional rotations. This group in­
cludes, of course, the complete Lorentz group of trans­
formations in the (itq, x2, a*3, ;r4)-spacc under which the 
field quantities of the vector theory and of the pseudoscalar 
theory are transformed separately. For a general five­
dimensional rotation, however, the field quantities of these 
two theories arc mixed up.

2. The Kramers representation.
Let px, p2, p3, oq, cr2, cr3 be the ordinary Dirac matrices, 

where p3 and cr3 are diagonal (“Dirac representation’’).
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Introducing now the variables px, 
following relations

P-/’ PZ’ «X’ «y’ «z by the

Px = P3 «X = «1

Py = ' — p2 «y = 0-2 > (4)

PZ = Pl «X = cr3

it is seen that the new variables satisfy the same algebraic 
relations as the original variables, e. g.

PxPy = ZPz-

In the so-called Kramers representation which we, following 
Belinfante, shall use in the present paper, pz and uz 
are chosen to be diagonal so that the matrices of px, py, pz, 
crx, œ , &z in the Kramers representation are the same as 
the matrices of px, p2, p3, oq, ct2, cr3 in the Dirac repre­
sentation.

For reference, we write down in the Kramers repre­
sentation some of the quantities which will be used in the 
following:

ß = Px

Y = — iß« = ~Py«

Yr = ß = Px

Yo = y i y2 y3 y4 = — p:

(5)

3. Rotations in the five-dimensional space.

For an infinitesimal rotation in the five-dimensional space,

V = 0
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a four-spinor transforms according to the formula (cf. M.

(9). (9'))

where
(7)

(8)

(9)

or, in the Kramers representation,

{9yv}

0
Z
9 Px°x

1
— P O’2 rx y

i
— p o -9 r'x Z 2 Py

z
— 0 O’9 rx X 0

Z
2^

i
’ 2

z
— p o9 r Z X

i
; p O’9 rx y

z
" 2^ 0

z
2 CTx

Z
— p O’9 Rz y

Z z z i
2^ 0 2PxCTz

Z z i z
9 P /Z — p o9 rz x — p O’2 y ------p o9 rz z 0

(10)

The transformation equations for a finite rotation in the 
(x’a, xp)-plane are obtained by substituting (8) into

S (<p + dtp) = S (<p) • S (d<p) .

We get thus the equation

S (<p + d<p) = (1 + <7a(3 d<p) S (<p)

with the only continuous solution

to be used in (7).
(ID
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4. Undors.

Undors are, according to the definition of Belinfante, 
quantities transforming as products of four-component 
Dirac wave-functions (four-spinors). The number of four- 
spinor factors in the corresponding transformation scheme 
is called the rank of the undor. An undor of the first rank 
is thus simply a four-spinor.

In the following, we shall deal with undors of the second 
rank, i. e. quantities with 16 components ^k¡kt transforming 
as products ipki tyk* (klt 7c2 = 1, 2, 3, 4). It will be con­
venient to arrange the 16 components into a square scheme

which, however, is not to be confounded with a matrix 
representing an operator.

In our considerations we shall only need operators which 
act either on the first or on the second index of the undor. 
We characterize such operators by providing their matrices 
with the suffix or (2\ respectively. Operators with the 
matrices A^ and A(2\ for instance, will transform the undor 

T according to the formulae

= JF dl I U' )'t'l-A,
k' = 1

4

k' = 1

(13)
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In accordance with (7), the transformation of an undor of 
the second rank by a rotation in the five-dimensional space
is given by

(14)

It can be shown that, if we only consider the subgroup 
of Lorentz transformations in the (x1} x2, x3, <r4)-spacc, 
the transformation (14) will have the special property that 
the elements inside one of the four subsquares (T11, T12, 

Ym), (Ts1, V32, 4'11, Y„), (Y,,. T», Y,,, Y,,) and (Y33, 
T34, ^43> ^44) arc n°t mixed up with elements of the other 
squares. This is just the case treated by Belinfante in 
his four-dimensional theory. He was able to show that an 
undor of the second rank comprises—with respect to the 
complete Lorentz group—a scalar, a four-vector, an 
antisymmetrical tensor of the second rank, a pseudo-four- 
vector, and a pseudo-scalar. Furthermore, he deduced a 
possible correspondance between the 16 components of 
these quantities and the 16 undor elements. Now, the meson 
fields and the source densities are described just by the 
tensors mentioned above, a fact which makes the undors 
so useful in the treatment of the meson theory. In the 
correspondance chosen by Belinfante, a symmetrical 
undor contains only the quantities appearing in the vector 
meson theory (the Proca field), while an antisymmetrical 
undor contains the quantities of the pseudoscalar theory, 
so that a general undor will just represent the combination 
of fields dealt with in MR. This correspondance is, however, 
not unique since another possible correspondance would be 
obtained by changing the sign of all elements in one or more 
of the four subsquares in (12).

Passing to the five-dimensional theory, the field variables 
of the vector and the pseudoscalar theories are, as mentioned 



Undor Representation of the Five-dimensional Meson Theory. 13

in section 1, comprised to a five-vector and an antisym­
metrical five-tensor of the second rank (cf. M. (10), (10'),
(11) , (11 ')). Now, if we do not confine ourselves to Lorentz 
transformations but consider Hie full group of five-dimen­
sional rotations, we find that the transformation (14) mixes 
up elements from different subsquares of the undor scheme
(12) . This means that some of the arbitrariness in the 
mentioned correspondance between undor elements and 
field quantities is removed.

It is thus impossible to make a straightforward generaliz­
ation of the correspondance set up by Belinfante in re­
placing the field quantities of the four-dimensional theory 
by the corresponding quantities in five dimensions. A simple 
calculation shows that this would lead to obvious contra­
dictions. Consequently, we have to find a new correspond­
ance between the 16 undor elements, on one hand, and 
the antisymmetrical tensor and the five-vector f' 
on the other hand. Since the last mentioned quantities 
together have 15 components only, we add a scalar /t in 
order to obtain the complete representation of the 16 
independent undor elements. The criterion of the consist­
ance of such a correspondance is that the transformation
(14) transforms the quantities 6?^, and /t as the com­
ponents of a tensor, a vector and a scalar, respectively.

A straightforward calculation shows that such a cor­
respondance can be obtained from the correspondance 
scheme set up by Belinfante by a direct generalization 
to five dimensions followed by a change of sign in the two 
subsquares forming the last two columns of the undor 
scheme. This correspondance is given below, in equation
(15) , for the meson fields and, in equation (16), for the 
sources giving rise to these fields.
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In the last formula, C denotes a scalar which must be 
included in the scheme similarly to the scalar /Í in (15).

From the equations (2), (3), (5) and the equation

C = — i/d t th, (17)
K 7

which is the only possible expression for a scalar source, 
it is seen that

íTp Xk, k, = CTP)cT Vk, ( 18)

where is an operator dividing C, Jf and >8»^ by g0, 
gx and g2, respectively.

A simple calculation shows that the correspondance (15) 
satisfies the criterion mentioned above. As an example, we 
shall bring the calculation for a rotation in the (x0, xi)~ 
plane. The corresponding operator S in equation (14) is, 
according to (10) and (11),

® <p
.S = cos — — i sm

From (14) we then get

*ii = *1! cos2-|-1>„ Sin’- + <!>„) sin ’ cos ?

*12 = *ia cos2 -^ — *4, sin2 —í(*l3 + *4s) sin I H°s I

. . . etc. (16 eqq.)
or, from (15),

^23 + ^¡4 + i ^13 — Í ^*24 =

= ^23 + 14 COS <p + i <X13 COS <p — Z <x24 — Z 6r03 sill Ç> — <jt04 S ill Ç»

— ^*12 — í*34 “T ZK Uq — i H' —
— — Í>12 COS <P— 6*34 + Í K Uq COS 9— Z /í + úr02 SÍll <p + Z K f \ sill <p 

... etc. (16 eqq.).
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Solving these equations wc get

^*23
— 23 =

14 = ^*14 cos 9“ ^"04 sin 9 etc.
^<13 = ^>13 cos 9- ^*03 sin 9
€»24

24 K -- Jt
fir 12 = ^*12 cos 9-- ^"02 sin 9
f*34 — ^*34

. . . etc.

i. c. the well-known transformation formulae for a tensor, 
a vector and a scalar under the rotation in question.

5. The undor field equation of the symmetrical 
field theory.

Having obtained a correspondance between the tensor 
quantities of the meson theory and the elements of the 
undors 4* and \, we may now comprise the 15 equations 
(1) and a trivial scalar equation in one undor equation 
closely analogous to the Dirac equation of the electron:

2KT + 2X+(r,J’-y®)nM'»> = 0 (19)

which, of course, corresponds to 16 equations between the 
undor elements.

In fact, since the operator y^ has the representation

the introduction of (15), (16) and (20) into (19) gives the 
equations
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K (^23 — ^23) + K (€* 44 ~ + i K ( ^*13 — ^13) —

— Z K ( <k24 — $24) + K (z I>3 + 7>4) ( — Z U.2) +
+ k(z'/)l + 7)2) (- f/3 + Z u4) = 0

(A’i = 1, k.2 = 1)
— K ( 6? 12— $12) — k( €< 34— $34) + z (k2 <70— JIq) — z k ( fi—<*) + 

+ Z 7/j ( €< 03 — Z K I74) + (z €< 04 — K t 3) +

+ z7Jt(f»01— zK Ï72) + 7)2(z €>02— K ¿4) — 0
. . . etc. (16 eqq.) (Aq = 1, A'2 = 2)

with the solution

€<23 — $23 = 7)2I73 — U2 K2 L 0 + 7>t €<oi + A)2 €j?02 +
€>14 — Sl4 = 79t t 4--/A + 7)3 €<o3 + 794 ^04 —

^*13 — $13 = DttJ3--^3 . . . etc.
€*24 $24 = A92 4 --Ö4 U, K = €
€<12 — $i2 = 2--^2

€*34 ^34= Ai3r 4-

. . . etc.

i. e. the equations (1) and the trivial scalar equation

K = C.

The equation (19) differs from the undor equation of 
Belinfante (formula (20), p. 26) by the sign of y^ 111 
accordance with the change of sign in the correspondance 
equations (15) and (16). On account of the well-known 
properties of the Dirac matrices yu, the equation (19) is 
invariant with respect to live-dimensional rotations.

6. The undor field equation of the neutral meson theory.

Like the equation (19), the undor equation

2K'f + 2.V + (Y(p1, + y(p’)ZJ11'f = 0 (21)

D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XIX,9. 9
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is invariant with respect to rotations in five-dimensional 
space. As it will be shown in the following, (21) represents 
the field equations of the neutral meson theory. Con­
sequently, the undor quantities Y and X are not printed 
in heavy letters in this section, since the neutral theory only 
deals with one single component in the isotopic spin space 
(cf. Section 1).

Substituting (15) and (16) in (21) we obtain the 16 
invariant field equations

K—C + DyU^ = 0

= K-U^+D^K

<"^ka + «xG,k+OkGa>) = «

(a) I

(b) (22)

(c)

where /[p, v, i,k, Ä] is the number of inversions in the 
permutation p, v, i, k, à of the numbers 0, 1, 2, 3, 4.

The equations (22) may also be written as

K— C+ Div U = 0 (a)

M = K2 U + Grad K (b)

k(G —S) = Rot G (c)

(23)

where Div and Grad arc the straightforward generalizations 
of these differential operators to five dimensions, and Rot 
is defined by

A ^kA + ^A Gik + GAi = PotikAG = (—l)7[,’K’À’p’vlRotRVG. (24)

If we express the antisymmetrical tensor of the second rank
G'pV by an antisymmetrical tensor G1K^ of the third rank by 
means of a formula analogous to (24) we get, instead of 
(23 c), the tensor equation of the third rank

k(G— S) = pcrrG. (23 d)
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Supposing now that the variables in (23) are independent 
of the coordinate x0, we find that these equations reduce 
to the four-dimensional equations

K-C + DkUk = 0 (a)

•Wft = + (b)

M„ = K2 U„ (c)

K(GMm —SMm) = ('ln. + <d >

~ ^r^klr' (0

(25)

Latin indices running only from 1 to 4. The equations 
(25 d) and (25 e) are obtained from (23 d) for i, k, Ä # 0 
and i = 0, respectively. The equations (25) are just 
the field equations of the neutral meson theory in four 
dimensions.

We have, thus, for the scalar-pseudovector theory in 
five dimensions in (21) obtained an undor representation 
similar to that given by (19) for the vector-pseudoscalar 
theory.

7. The adjoint undor.

We define the adjoint to an undor T of the second 
rank in a similar way as it was done in the case of an 
undor of the first rank by the equation (3):

Tt = — T*ß(l)ß(2)- (26)

Consequently, transforms under a transformation (6) 
according to the formula 

(27)

so that T is an invariant. As usual, multiplication from 
the right by operators A^1 and A^2 is defined by

2
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4

(28)

k' = 1

whence
(29)

k' = 1

4

Remembering that the field quantities and Uk 
(k, Z = 0, 1, 2, 3) are real, while and 7Í are purely
imaginary, we get from (15) by a simple calculation that 
the elements of can in a simple way be expressed 
by the elements of viz.:

From the undor field equations (19) and (21) we get 
the following differential equations for the adjoint undors 
in the symmetrical and neutral theory, respectively:

2KTt + 2A't-Tf/Ju(y(ul)-y(u2)) = 0 (31)

2KŸf + 2Àrt -^^(y^+y^) = 0. (32)

8. The Lagrangeian and the current vector in the 
symmetrical theory.

The field equations (19) may be derived from the va­
riational principle

5\^'i/ß=0 (33)
</

where
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= ipt (k + Yu~Yp nJ V + 2x| (34)

the 16 quantities k being varied independently. In the 
expression (34) a scalar product like 4*1 T means

4

<35>

The function ■£’ can, however, not be considered as a 
Lagrangeian. In fact, if we express -Z?' in terms of the 
tensor held variables, we obtain

= K |— 6r RV pv + r2 Í n ^p + + ^’pv^pv —
... 1 . . l(36)

— 2I/p 2 J£C+ I p/>v ^pv + _2 ^*pv(7)p V~DV 1 p)j

where now 6?yV, IL audit should be varied independently, 
but all components of (>l^v cannot be regarded as canonical 
variables, since some of the corresponding time derivatives 
do not appear in We have, therefore, to proceed other­
wise and to regard the field equations (1 a) as definitions of 
the 6rpv, so that the quantities IL, only, are independent 
variables in (36). At the same time, we put the scalars K 
and <7 equal to zero, these quantities being unimportant in 
this connection. Substituting the expressions (1 a) for 
in (36) we obtain, by partial integration, the Lagrangeian

+ (37)

Expressing the equations (la) in undor language, these 
relations are now to be regarded as subsidiary conditions 
in the variational principle (33). As the total Lagrangeian 
we get thus
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J{*f [(k + ^^\)* + 2x] + 

+ 2 yV'^YiA + ^f)’/'} d!!

or, in terms of the tensor field variables:

(38)

(39)

where J/o is an abbreviation for

A/o =

Mn and Mp denoting the masses of the neutron and the 
proton, respectively.

Then we have, in accordance with M. (21) and (22), the 
variational principle

S Z3 = 0 (40)

4- *

where ip, ip and 17^ should be varied independently in such 
a way that the variations are zero at the boundary of the 
region Si. The Euler equations corresponding to variations 
of the Up are, as already mentioned, identical with the 
field equations (16). Similarly, variation of ip and ip^ leads 

to the wave-equations of the nucleons. In this derivation, 
we can utilize the undor form (38) of . Remembering that 
the undor Jt, only, and not 4* depends upon ip and ip\ 

we get

(41)
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with

(42)

In terms of the tensor field variables these equations 
become

I pTYp+ 4K^c ^uvT [Ypp Yv] J 0 (43)

(44)

which are the same as (15) and (15') in M.
Multiplying (41) by xp* from the left and (42) by xp 

from the right, and adding, we get

^p^YpV7 = °- (45)

Furthermore, multiplying (41) by from the left
1 2

and (42) by - from the right» and adding, we obtain, 

by using the ordinary commutation relations of the isotopic 
spin matrices1:

^u^^aYpV7 = A Aj3. (46)

Here we have used the formulae 

indicating that is a homogeneous function of the first 
degree in xp and xp\ respectively.

1 The symbol A indicates, as in MR. and M., a symbolical vector 
multiplication, e. g. (4 A /f).{ = .4r B.> — .4^
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In a similar way, we get from (19) and (31), using (29)
and (30),

= A* Af-'VaA-L' T a A .

(47)

(48)3

satisfies the divergence relation

(49)

and, consequently, all quantities (49) arc identically equal 
to zero.

have vanishing divergence but, on account of (15) and (30), 
it is seen that 

From (45), (46), and (47) we finally see that the five- 
vector

Thus, the vectors ip^ ip and 5^ may be interpreted as the 

five-dimensional particle-current density and charge-current 
density, respectively.

The expression (48) for the charge-current density is 
obviously the only possible. It is true that also the quantities

T3

(1) (2)
Y'-- •V

T/ 2 '
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9. Difficulties of the five-dimensional neutral 
meson theory.

If we try to establish a variational principle of the neutral 
meson theory given by the equations (21), (22), and (23) 
in the same way as it was done in section 8 for the symme­
trical theory, we meet with a serious difficulty. Since the 
equations (21) of the neutral meson theory differ from the 
equations (19) of the symmetrical theory by the sign of 
Yp, only, one would expect that a variational principle 
of the neutral theory would be obtained from (33) by 
changing the sign of yj/ in (34). Such a procedure, how­
ever, does not lead to the right field equation (23), but we 
get a set of trivial equations in which the terms containing 
the operators Grad, Div and Rot in (23) are missing.

The reason for this peculiar difference between the two 
theories is the following. In section 8, we have in the derivat­
ion of the field equations from the variational principle 
made use of the relation

r f
where klt are determined by (cf. (30))

k^k't

The analogous relation in the neutral theory is 

<9
Yv) + Yv)

(52)
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and the difference in sign of the right-hand sides in (51) 
and (52) makes in the Euler equations all terms containing 
derivatives cancel each other.

The four-dimensional theory described by (25) may, 
however, be derived from a variational principle with the 
Lagrangeian

(53)

K and Gklm being the independent variables, while Uk and 
Gkl are defined by (25 b) and (25 e), respectively.

Since

Gpy ~ Gkl + 3 Gklm Gklm (54)

the direct generalization of the Lagrangeian to five-dimen­
sions will be

k I 1 I
= 2 I 2 G>" <:^ ~S»v - K" - '<2 + 2 KC • 05)

If we vary K, the being defined by means of (23 b), we 
really obtain the equation (23 a); but if we vary all the Gpv 
independently—which would be a possible generalization of 
the four-dimensional case—we get the equations

(56)

which differ from (23 c) by the essential term Rot G.
On the other hand, if we also in the five-dimensional 

theory consider the quantities Gklm as independent variables, 
the Gkl being defined by (25 e), we obtain the equations

K ( Gkim Sklm ) — j (57)



Undor Representation of the Five-dimensional Meson Theory. 27 

which deviate from the field equations (25 d) by terms con­
taining derivatives of the source densities.

It is easily seen that it is impossible to find any kind of 
variational principle of the type (33) from which the right 
field equations could be derived by varying all the quantities 
Gpv independently. Since the corresponding function ' 
has to be an invariant, it will, in the general case, be of 
the shape

— a Gpv Gpv + b Gpv Spv + c Rotpv G • Gpv

where a, b and c are constants. If c — 0, we obviously have 
to do with the case treated above, but even if c # 0, the 
last term will give no contribution to the Euler equation 
since the variation of

Rot py G G py

on account of the definition (24) is equal to zero for any 
variation of the quantities GpV which vanish at the 
boundary.

On the other hand, if we only vary the Gklm, the Gkl 
being again defined by (25 c), the constant c has also to 
be put equal to zero; otherwise we would get field equations 
involving derivatives of the second order, since we have 
(cf. (54))

Gpy Rotpy G = Gkl Rotw G + — Gklm poTAIm G =

~ KDr Gklr RotW G + Skl RotM G + ’ (58)

where the quantity Rot^G contains terms like Dm Gklm (no 
summation!). Consequently, the first term on the right
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hand of (58) will give rise to second derivatives in the 
Euler eqnation.

Thus, the equations of the five-dimensional neutral 
meson theory cannot be derived from any variational 
principle, a circumstance which may be connected with 
the fact that the field equations (21)-(23) consist of two 
separate groups: the scalar equations (a), (b) and the 
tensor equations (c) which even under five-dimensional 
rotations are not transformed into each other. Since a 
Lagrangeian principle is essential for the quantization of 
the field equations, the impossibility of formulating such 
principle in the neutral theory may be taken as a strong 
argument in favour of the symmetrical theory which, in 
contrast to the neutral theory, is able to satisfy the more 
rigorous claims resulting from a generalization to live 
dimensions.
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